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Abstract

The equation of the precessional motion of a spinning top and the
equation of the Larmor frequency require an additional factor of 2. The
longstanding errors were caused by the wrongful treatment of a vari-
able in the numerator of a differential quotient as vanishing although
its true value was zero. As a consequence, one finds that, when do-
ing things correctly, the dimensionless Landé factor of the electron is
reduced to unity (instead of 2 in magnitude). Thus, there is no gy-
romagnetic anomaly of the spinning electron. The disputed result of
Einstein’s and de Haas’ famous experiment is thereby vindicated. The
results of experiments with macroscopic gyroscopes confirm the long-
standing error, even though the measured angular velocity seems to
match that predicted by the erroneous equation. To assess things cor-
rectly, unavoidable nutations must be considered (accompanying any
precession of macroscopic objects), which result in a significant reduc-
tion in angular velocity. Therefore, the measured angular velocity of
macroscopic gyroscopes is expected to fall short of the correct equation
yield for purely precessional motion.

Keywords: Spinning top, Larmor frequency, Landé factor , Einstein, De
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I. Introduction

In textbooks, the precession velocity of a spinning top is given by the
equation [see for instance: W. Thomson (Lord Kelvin) / P.G. Tait (1879),
Section 105, pp. 79/80; H. Crabtree (1909), Art. 34, Fig. 20, pp. 37/38;
A. Sommerfeld / F. Klein (1910), Chapter IX, §1, Fig. 113, equation (1), p.
762/763; L. Graetz (1917), Chapter 2, Fig. 40, p. 47, Section 105, pp. 79,
80; J.L. Synge/ B.A. Griffith (1942), Section 14.3, p. Fig. 151, p. 428; P.A.
Tipler/ G. Mosca (2008), Chapter 10, Fig. 10-23, equation 10-19, p. 340;
R.W. Pohl (2017), Chapter 6.11, Fig. 6.35, pp. 118/119]:
(1)

ω = T0
J spin

Omega is the angular velocity of precession around the vertical z-axis,
Jspin is the angular momentum of the top around the axis of rotational sym-
metry (spin), T0 is the magnitude of the horizontal torque acting on the top
in a direction perpendicular to the spin when Jspin forms a 90˚ angle with
the vertical z-axis, and when the torque T is at its maximum value. If the
spinning top is a permanently magnetized bar (magnetized in the direction of
its axis of rotational symmetry, and hinged at its center of mass at the origin of
coordinates), and if that bar finds itself in an external, homogeneous magnetic
field B that points in the direction of the vertical z-axis, the angular velocity
of precession around the vertical z-axis is, in text books, given by:
(2)

ω = T0
J spin

= µB
J spin

The parameter µ is the magnetic moment of the magnetized bar and B is
the external magnetic field.

However, equations (1) and (2) are physically incorrect by a factor of two.
This is demonstrated in the present study.

II. A first erroneous attempt of deriving the common equation of
precessional motion

1) A spinning bar magnet (permanently magnetized in the direction of its
axis of rotational symmetry, and hinged at its center of mass at the origin
of coordinates) is assumed to perform a precession around the vertical z-axis.
See the following figure [from Purcell/Morin (2013), Fig. J.1,
https://archive.org/details/ElectricityAndMagnetismPurcell3rdEdition]:

This precession is brought about by a torque T caused by a homogeneous
magnetic B-field that points in the vertical z-direction. Thus, torque T has a
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purely horizontal direction. In textbooks, (2) is then derived from reflections
of the following kind [the example is taken from E.M. Purcell / D. J. Morin
(2013), Appendix J (Magnetic Resonance), p. 821]:

“In a short time Delta t, the torque adds to the angular momentum of our
top a vector increment Delta J in the direction of the torque vector of magnitude
µB sin theta Delta t”.

This statement is incorrect, simply because Delta Jhoriz or (dJhoriz), that
is, the magnitude of the generated angular momentum in a horizontal direc-
tion, is zero, and not just vanishingly small (“increment”). In other words,
Delta Jhoriz is not equal to µB sin theta Delta t. Thus, dJhoriz/dt, too, is
zero. In greater detail: Although torque exists in a horizontal direction [see
Purcell/Morin (2013), Fig. J.1 on page 822], it does not produce angular mo-
mentum in the direction of the torque once the spinning top precesses steadily
around the vertical z-axis (which is presupposed to be the case in the situation
depicted in Fig J.1). In other words: The angle between the internal axis of
rotational symmetry of the spinning top and the vertical does not change, not
even a bit. Moreover, the magnitude of the total angular momentum Jtot re-
mains unchanged over time (Jtot 2=Jtot 1). Therefore, Delta Jhoriz (or dJhoriz)
is zero for the spinning top, and not vanishingly small (as textbook authors
assume).

One should note that, when doing things correctly, the direction of the
vector dJhoriz is not expressed by reference to a stationary Cartesian system of
coordinates; instead, the direction of the vector dJhoriz is rotating with time,
as does the torque Thoriz. As a consequence, Jhoriz is capable of undergoing
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changes in magnitude, but not in direction. Only then is it certain that any
change in the vector Jhoriz is caused by a torque, and not by something else. In
other words, only then is it that we are allowed to postulate Thoriz = dJhoriz/dt
.

There exists an analogy with the Lorentz force on a moving, charged par-
ticle. The Lorentz- force makes the particle move in a circle with radius r,
but it does not increase its kinetic energy Wkin or its linear momentum P.
This is despite the fact that a radial force Fr= dPr/dt is constantly acting
on the particle in a radial direction. The absence of an increase in kinetic
energy can easily be explained by the fact that the two vectors F and ds are
always at right angle with respect to each other, so that their dot product
(yielding work dW) is zero at any time. It’s not so clear why the particle’s
momentum, too, remains invariant. Given that a radial force Fr is active all
the time, the quotient dPr/dt should be different from zero, that is, as large as
Fr. Obviously, a radial counter-force is constantly acting on the particle. That
counter-force is the “force” of inertia, or the centrifugal “force”. The relevance
of this counter force (centrifugal “force”) is made obvious by the the fact that
the radius of the circle performed by the charged particle in the magnetic field
depends on a parameter that does not determine the magnitude of the cen-
tripetal force (=Lorentz force), but only that of the centrifugal “force”; that
parameter is the mass m of the particle. The same is true for a gyroscope in
stationary precessional motion. A horizontal torque generated by a magnetic
or gravitational field is constantly acting on it, but this torque is neutralized
by a counter-torque caused by the “force” of inertia. Thus, the net magnitude
of dJhoriz/dt is zero in a stationary state of precessional motion.

If, instead, we define the vector dJhoriz as a vector whose direction is defined
by reference to a stationary Cartesian system of coordinates, it will be capable
of undergoing changes in direction, and the quotient dJhoriz/dt will no longer
be zero (since dJhoriz will not be zero, but only vanishingly small). However,
the so-understood quotient dJhoriz/dt = dJspin/dt is merely an expression of
the angular velocity of precessional motion, which follows from the presup-
posed fact of a precession, and from nothing more. In other words: In that
case, the equation dJhoriz/dt = dJspin/dt is correct a priori (and therefore
doesn’t qualify as a physical law, but as a tautology), given that a precession
is occurring. But since it not sure whether or not dJhoriz/dt is also equal to
Thoriz (which would be an empirical statement, that is, a statement that does
not follow from the fact alone that a precession occurs), it is also not sure
whether or not (1) and (2) are physically correct. For these two equations
(and all “proofs”) stand and fall with a substitution of dJhoriz/dt by Thoriz, or
of dJhoriz by Thorizdt, which is revealed when the train of thought that makes
up the asserted proof is continued. Quod erat demonstrandum.

2) A more detailed way of advancing the same “proof” of (1) is the follow-
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ing:
– In a Cartesian x,y,z-diagram (where z is the vertical direction), the length

of a vector whose origin coincides with the origin of coordinates represents
the magnitude Jspin of the angular momentum around the axis of rotational
symmetry of the spinning top (bar magnet) at a given moment in time (for the
distinction between Jspin and Jtot see below). The small (horizontal) vector
dJhoriz mentioned by Morin/Purcell was added to the tip of vector Jspin by
these authors. The two vectors form a right angle with each other. The small
angle d phi is the small angle between the positions of the precessing vector
Jspin at the beginning and end of the short temporal interval dt.

– As the angle d phi (expressed in rad) is equal to the quotient of the length
dJhoriz of the short arc along the circumference of the tip’s precession-circle and
the radius Jspin sin theta of the tip’s precession-circle, Purcell/Morin claimed
for this angle [theta is the angle between the vertical z-axis and Jspin]:
(3)

dφ = dJhoriz
Jspin sin θ

= µB sin θ dt
Jspin sin θ

or
(4)

dφ
dt

= ω = dJhoriz
Jspin sin θ dt

= µB sin θ dt
Jspin sin θ dt

= µB
J spin

However, these equations are incorrect. The differential quotient dJhoriz/dt
appearing in (4) is zero (see above). Thus we have:
(5)

dφ = dJhoriz
Jspin sin θ

= 0
Jspin sin θ

= 0 6= µB sin θ dt
Jspin sin θ

or
(6)

dφ
dt

= ω0 = dJhoriz
Jspin sin θ dt

= 0
Jspin sin θ dt

= 0 6= µB sin θ dt
Jspin sin θ dt

= µB
J spin

The distinction between “zero” and “vanishingly small” (with respect to
dJhoriz and “µB sin theta dt”) makes a difference of first order between the
two sides of the inequation (6): In the left-hand half of inequation (6)], dJhoriz

turns up in the numerator of a quotient dJhoriz/ (Jspin sin theta dt), whose
denominator (Jspin sin theta dt) is vanishingly small. In other words, the
quotient dJhoriz/ (Jspin sin theta dt) is always zero, whereas the quotient µB
sin theta dt/ (Jspin sin theta dt) = µB/Jspin is a non-vanishing number.

III. A second erroneous attempt of deriving the common equation
of precessional motion
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A second (also unsuccessful) attempt to obtain (1) is the following:
The equation

(7)

d~Jspin
dt

= ~ωp × ~Jspin

was used as the starting point by some authors. Omega is the angular
velocity of precession. Jspin is the angular momentum of the top around the
axis of rotational symmetry (spin).

Note that (7) presupposes that Jspin undergoes a change in direction, but
not in magnitude. If Jspin undergoes a change in magnitude but not in direc-
tion, we have:
(7a)

~dJspin
dt

= ~Tspin 6= ~ω × ~Jspin = 0

If Jspin undergoes a change in direction but not in magnitude (as is the case
when a gyroscope is precessing), we have:
(7b)

~dJspin
dt

= ~ω × ~Jspin 6= ~Tspin = 0

As the next step, it is postulated that the right-hand side must be equal to
the permanent torque Thoriz applied to the gyroscope in a horizontal direction,
or:
(8)

~dJspin
dt

= ~ω × ~Jspin = ~Thoriz

The subscripts “spin” and “horiz” represent directions perpendicular to
each other.

Next, (8) is converted into:
(9)

| ~dJspin
dt
| = |~ω × ~Jspin| = |~Thoriz|

from which (1) is derived.
However, (8) and (9) are incorrect. The correct equations are:



Correction of a flaw in the equations of precessional motion of ... 123

(10)

~ω × ~Jspin =
~dJspin
dt

= 2~Thoriz and

(11)

|~ω × ~Jspin| = | ~dJspin
dt
| = |2~Thoriz|

This is shown below. No reason was given by the authors why the factor
in front of Thoriz in (8) and (9) was simply unity, and not any other number.

One must realize that (7) is nothing but an expression of a given preces-
sional motion, and does not assert anything other than that a precession is
taking place. By itself, it does not imply a relationship with a torque Thoriz.
With the same right, (7) could also be applied to the hand of a clock. Vector J
in (7) can then represent the length of the hand, and vector omega can then
represent the angular velocity of the hand. When knowing two of the three
vectors that appear in (7), the third one is fixed, both in case of the clock and
the gyroscope.

Therefore, when setting dJspin/dt equal to Thoriz in (8) without any fur-
ther arguing, one does not state an empirical law, but either speculates on an
empirical relationship, or makes a definition of Thoriz. In the latter case, we
have:
(11a)

~X :=
~dJspin
dt

= ~ω × ~Jspin

By itself, (11a) lacks of an empirical or logical necessity to set X equal to
the torque Thoriz (acting on the gyroscope), even though the dimension of the
vector X is the same as that of a torque. Definitions are the results of arbitrary
decisions, and they defy a rating of right or wrong. Even if we decide that X
shall represent a torque, it will not be clear whether or not any factor should
be placed in front of Thoriz. Whether nor not X should the same as Thoriz with
or without a factor in front of it, that is, whether or not a chosen definition
is useful, is not revealed by (11a) proper. Instead, it is revealed by reflections
that scrutinze how that decision would fit into the system of equations (laws)
that already exist in physics, that is, whether or not the decision would lead
to contradictions with those equations.

IV. The derivation of a correct equation of precessional motion

A correct equation is obtained by simply observing two basic principles:
first, Newton’s first law when applied to the vertical z-component of rota-
tional motion (which is, different from the components of rotational motion in
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the x- and y-directions, not affected by the torque), and, second, the law of
conservation of energy.

Let us imagine that the angular momentum of a spinning, permanently
magnetized bar is oriented along the horizontal x-axis to start with. Grav-
ity is absent. A homogeneous magnetic field B (not too strong) shall now
be added which points strictly in the vertical z-direction. This situation was
depicted in Purcell and D. J. Morin (2013), Fig. J.3., p. 823. In the following,
Jspin is the magnitude of the angular momentum around the intrinsic axis of
geometrical symmetry of the spinning bar which pointed in the horizontal x-
direction before the external magnetic field B was switched on (with the latter
pointing in the vertical z-direction), T is the torque caused by the homoge-
neous, external magnetic field B (which points in the vertical z-direction), the
term Wkin−precession is the kinetic energy of the precessional motion, the term
Jprecession−z is the (vertical) z-component of the angular momentum of the pre-
cessional motion, Jtotal−z is the z-component of the total angular momentum,
theta is the angle between the horizontal x,y-plane and the spinning bar (or
the vector Jspin) whose center sits at the origin of coordinates (note that theta
is no longer the angle between the spinning bar and the vertical z-axis), µ is
the (permanent) magnetic moment of the spinning bar, omega is the angular
velocity of precessional motion, M is the moment of inertia of the precessional
motion. Thus, we have the following two basic principles:
(12)

θ=θ∫
θ=0

√
(T 2

x + T 2
y ) dθ =

θ=θ∫
θ=0

Thorizontal dθ = Wkin−precession = 1
2
Mω2

or
(13)

δWkin−precession
δω

= Mω = 2
ω
1
2
Mω2 = 2

ω

θ=θ∫
θ=0

√
(T 2

x + T 2
y ) dθ = 2

ω

θ=θ∫
θ=0

Thorizontal dθ = Jprecession

or
(14)

ω =
2
θ=θ∫
θ=0

√
(T 2
x + T 2

y ) dθ

Jprecession
=

2
θ=θ∫
θ=0

Thorizontal dθ

Jprecession
=

2 µB
θ=θ∫
θ=0

cos θ dθ

Jprecession
= 2µB sin θ

Jprecession

and also
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(15)

Jtotal−z = Jspin−z + Jprecession−z = Jspin sin θ + Jprecession−z = 0

or
(16)

Jspin−z = Jspin sin θ = −Jprecession−z

Because the precession is only in the z-direction and in no other direction,
we have the absolute magnitudes:
(17)

|Jprecession| = |Jprecession−z| = |Jspin sin θ|

Equation (14) thus converts into:
(18)

ω = 2µB
J spin

The angular velocity of the precessional motion in the z-direction does not
depend on theta. It is twice as large as reported by Purcell and other authors.

V. Energy and momentum balance of the process that brings about
a steady precessional motion

As regards the torque around a horizontal axis (oriented always perpen-
dicular to the axis of rotational symmetry of the bar, that is, to the axis of
spin), the two basic principles mentioned above do not exclude a change in
the magnitudes of the total angular momentum and the rotational energy as a
result of the action of that torque. However, they set a limit on the extent of
the change. That is, for the spinning top (bar) to precess around the vertical
z-axis, it has to pick up energy to the extent of the kinetic energy of preces-
sional motion. This energy is acquired before the final precessional motion is
established. This is achieved by giving way to the horizontal torque.

In other words: it is incorrect to state that the horizontal torque does not
result in an increase in the total rotational energy. Instead, the horizontal
torque results in an increase in the total rotational energy and a change in the
total angular momentum, but only to a limited extent.

For the stationary state of precession, we thus have (according to the
Pythagorean theorem, and because Jtot points in a strictly horizontal direction,
given the net angular momentum of the gyroscope in the vertical direction is
zero, while Jprecess points in a strictly vertical direction):
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(19)

J2
tot = J2

spin − J2
precess

or
(20)

J2
tot = M2

spinω
2
spin − M2

precessω
2
precess = M2

spinω
2
spin −

4T 2M2
precess

J2
spin

=

M2
spinω

2
spin −

4µ2B2M2
precess

J2
spin

One realizes that while the total energy of rotational motion increases,
the total momentum declines as a result of the process that generates the
precessional motion. Once that motion has been established, the horizontal
torque is no longer capable of changing (=reducing) the magnitude of the total
angular momentum Jtot any longer. If the magnitude of the total angular
momentum could be changed any further, at least one of the two principles
mentioned above would be violated.

The decrease in the total angular momentum of the gyroscope during the
process (at the end of which the gyroscope precesses steadily) is accounted for
by the principle of conservation of angular momentum. While the external
magnetic field that was generated by a big magnet exerted a torque on the
spinning bar magnet, the magnetic field of the spinning bar magnet exerted a
counter-torque that acted on the big magnet. The counter-torque produced an
angular momentum of the big magnet that hadn’t been there before. Since the
sum of all angular momenta must remain invariant, it follows that the total
angular momentum of the gyroscope had to decline.

VI. The correct equation of Larmor precession

To obtain the equation of precession of a spinning top when the spinning
top is not a permanently magnetized spinning bar, but a charged, spinning
particle (Larmor precession), the quotient µ/Jspin is simply replaced by q/2m;
where q is the amount of electric charge of the particle and m is its mass [the
substitution of µ/J by q/2m dates back to O.W. Richardson (1908)]. This
substitution holds true (in classical physics) for all homogeneously charged
objects that are rotationally symmetrical. Therefore, (18) can be replaced by:
(21)

ω = 2µB
Jspin

= 2 qB
2m

= qB
m

= g qB
m

The parameter g is a dimensionless correcting factor required when the
spinning particle does not behave classically. If g>1, the magnetic moment is
greater than expected, or the angular momentum is smaller than expected (or
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both). If g<1, the magnetic moment is smaller than expected, or the angular
momentum is greater than expected, or both. Experimental measurements the
Larmor frequency (that yield omega) suggest that the Landé factor g is equal
to 1, so that the particle behaves classically.

However, if the wrong equation (2) is taken as a starting point, one arrives
at the wrong equation:
(22)

ω = µB
Jspin

= qB
2m

= g qB
2m

Measurements of the Larmor frequency (that yield omega) then wrongly
suggest that the Landé factor g is equal to 2 for the particle (electron), so that
the particle does not behave classically.

VII. The correspondence of cyclotron and precessional motion as a
cross-check of the equation of precessional motion

It is worth noting that the cyclotron angular velocity of charged particles in
a magnetic field is identical to the right-hand side of (21) (if g=1) [Ch. Kittel
(2005), Chapter 8, Equation 30, p. 200]. The equation of cyclotron motion
can easily derived from the following two equations (the left-hand side of the
first equation is an expression of the Lorentz force that acts on the charge q,
the right-hand side of the first equation is an expression of the centrifugal force
that acts on the inert mass m of the charge, r is the radius of a circle path):
(23)

qvB = mv2

r
∧ v = ωr ⇒ ωcyclo = qB

m

From (23), we learn that the circular motion at that angular velocity in a
homogenous magnetic field does not result in any internal pressure or traction
(inflicted by a Lorentz-force) on the spinning, charged object. In other words:
it results in no “tidal force”. This is because omega does not depend on r.

Furthermore, the cyclotron angular velocity equation (23) is valid for all
circular paths (around the magnetic field lines) of electrically (volume-)charged
bodies caused by the Lorentz force. In other words, given that the path is
circular, it must obey equation (23).

With regard to a spinning, non-magnetic, but electrically (volume-)charged
bar (hinged at its center of mass at the origin of coordinates) that was oriented
along the horizontal x-axis before the external magnetic field turned up, all of
its eventual circular motion of precession around the lines of the B-field (that
is, around the vertical axis of a x,y,z-system of coordinates) can be regarded as
cyclotron motion, given the existence of an external magnetic field and hence
a Lorentz force.
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Likewise, when replacing the spinning bar with a spinning macroscopic
sphere (subject to an external magnetic field) homogenously filled with fixed
electric charge in its interior, the precessional motion of this sphere must obey
the equation of cyclotron angular velocity as well as the equation of precessional
angular velocity. This requirement is met if (18) and (21) are accepted as the
correct equations for the angular velocity of precessional motion. However,
this requirement is not satisfied if (2) is adopted. This presents a cross-check
of (18) and (21).

VIII. A vindication of the result g=1 obtained by Einstein and De
Haas in their famous experiment

It is well known to every scholar that Einstein and de Haas performed
an experiment aimed at a determining the quotient µ/J for the electron [A.
Einstein / W.J. de Haas (1915)] by direct mechanical measurement of both µ
and J in a sample material (i.e., without resorting to the Larmor frequency).
The outcome was a confirmation of the classical equation µ/J = q/2m, and
the factor g was thus found to be equal to unity [see P. Galison (1982), p.
297: “Einstein’s theoretical prediction corresponded to a g-factor of 1; his and
de Haas’ empirical result was equivalent to a g-factor of 1.02 with an error of
0.10 .”].

Since 1915, the experiment has been repeated by others [for instance by S.J.
Barnett/ L.J.H. Barnett (1925)] with varying, though not compelling results.
P. Galison (1982) provided an overwiew.

It was because of the incorrect equation (22) of the Larmor precession that
the scientific community has eventually tended towards a value of two (rather
than one) for the Landé factor g. It was observed that matter was sending out
electromagnetic waves the origin of which was seen in the precessional motions
of particles. To describe these precessional motions, the (wrong) Larmor equa-
tion (22) was used. Therefore, based on the observed radiation frequencies or
the observed omega (and knowing B, q and m), the conviction prevailed that
g had a value of (approximately) two. The experimenters S. J. Barnett/L.J.H.
Barnett (1925, p. 128) expressed this development as follows:

“Our phenomenon is undoubtedly connected closely with the Zeeman effect,
as our magnetons may be considered to be executing regular precession upon
them brought about by the rotation. ... As Landé has suggested, the anomaly of
the Zeeman effect .... is probably related to the anomaly in our phenomenon.
This anomaly Landé and Sommerfeld have attempted to explain by a process
which appears to be ... attributing to this a value of [g] equal to m/e [g=2] ...
.”

However, with the correct equation (21) this argument becomes baseless,
and g is found to be equal to unity (as had been asserted by Einstein and De
Haas).
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IX. Laboratory experiments with macroscopic gyroscopes

Laboratory experiments aimed at determining the precession rates of gy-
roscopes are regularly performed for pedagocical purposes in undergraduate
courses at colleges and universities. As a result of these experiments, incorrect
equation (1) appears to be confirmed.

There is a simple explanation for this outcome; in these cases, precession
is necessarily accompanied by nutation. This reduces the angular velocity of
the precession by approximately half.

In greater detail, when the spinning wheel of a demonstration gyroscope
is released from rest, it drops slightly (see above). Thereby, it picks up some
kinetic energy. After reaching the equilibrium angle theta, the kinetic en-
ergy of the vertical fall is not instantly converted into the kinetic energy of
horizontal motion along a perfectly circular path of precession. Instead, the
fall of the gyroscope overshoots the equilibrium angle theta to some extent.
As a consequence, the path of precession of any point of the figure axis (axis
of rotational symmetry) displays twists and turns, and forms a succession of
numerous “U”s that sit side by side [see J. Hanks (1994), Fig. 4.2 A, p. 18].
The total length of the path is approximately doubled. However, the resulting
speed along this twisted path is determined (and limited) by the amount of
potential energy converted into kinetic energy during the vertical fall. Hence,
the kinetic energy is not larger than that in the case of a perfect, that is, an
undisturbed precession circle.

Given that the total length of the circular path is enlarged (roughly dou-
bled) by the twists and turns, the time needed to complete a full precession
circle has thus increased (roughly doubled), and the angular velocity is only
approximately half of that without nutation.

To put it the other way round: If (1) were correct, the experimental results
would have to fall significantly short of what is predicted in (1), given that
the total path, due to nutation, is much longer than 2 pi r, and also given
that the velocity along the path cannot be higher than it would be without
the nutation.

When it comes to electrons and their precession, there is no need to expect
a nutation.

Finally, one should be aware of the following consequence: In case empirical
results lead to a discarding of Equation (2), at least one of its starting points,
that is, the principle of energy conservation and the principle of conservation
of angular momentum, would thereby be proved to be empirically wrong.

X. Results

By using Newtonian mechanics and the principle of conservation of energy,
it was shown that the equation of the precessional motion of a spinning top
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and the equation of the Larmor frequency require an additional factor of two.
The longstanding error in the literature was caused by the wrongful treatment
of a variable (dJhoriz) in the numerator of a differential quotient as vanishing
although its true value was zero. When defining the vector dJhoriz to be capable
not only of changes in magnitude, but also in direction, it is no longer zero
(during the stationary state of precession), but only vanishingly small (which
makes an important difference). But then dJhoriz/dt is no longer a correct
expression of the torque that acts on the gyroscope.
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